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Abstract-We studied a model composite material consisting of a thin epoxy plate (matrix) reinforced with 
stiff circular disks (inclusions) and subjected to a uniaxial tension. At each inclusion-matrix interface there 
is an interfacial layer, an interphase, which has uniform properties. The inclusions are arranged in the 
matrix at random but with no overlap. For comparison we also considered square and triangular periodic 
arrangements. We have studied elastic fields of such composites both experimentally, using a 
photoelasticity method, and numerically via a finite element method. We have found that random 
inclusion arrangements give higher stress concentrations than the periodic ones owing to stress 
localizations. The highest stress increase is in a compliant interface case, which also exhibits the highest 
scatter in stress magnitudes for different random arrangements at the same volume fraction, % 1997 Acta 
Metallurgica Inc. 

1. INTRODUCTION 

A knowledge of local stresses in matrix-inclusion 
composite materials is important for design purposes 
since the presence of inclusions may give rise to stress 
concentrations, which, in turn, may result in 
initiation of cracking and/or plasticity. There are 
many factors which influence stress fields in 
composites: the mismatch in material constants, the 
shape and geometric arrangement of inclusions, the 
boundary conditions at inclusion-matrix interfaces, 
and the proximity to a surface. In this paper we focus 
on the joint influence of the geometric arrangement 
of inclusions and the matrix-inclusion interface on 
local elastic fields. 

A fundamental problem in the evaluation of 
local stress fields is the single inclusion solution 
[l, 21, which is applicable for composites with 
inclusions placed far apart. When inclusions are 
closely spaced stress fields interact and solutions 
become very complex. In order to simplify this 
problem effective medium approaches, such as the 
Mori-Tanaka method, for example, based on a 
single inclusion solution, have been used in the 
analytical predictions of stress fields [3-S]. Numeri- 
cal approaches usually involve the assumption that 
the arrangement of inclusions is periodic: square or 
hexagonal [&lO], or of more complex type [ll, 121. 
However, the distribution of fibers in composites is 
in general disordered. Thus, the above approaches 
may give good predictions for effective elastic and 

thermal constants, and average stresses, but they 
cannot capture local fields in composites with 
randomly arranged and interacting inclusions. A 
knowledge of local fields is needed in studies of 
damage initiation and propagation in composite 
materials since the damage, such as plasticity and 
fracture, is a localized phenomenon influenced by 
a geometric (and material) disorder [13-191. 

The influence of a random arrangement of fibers on 
local fields and/or effective properties was studied 
numerically [ 15-251 and analytically [26, 271; the 
more basic studies focusing on inclusion interactions 
involved solutions of two neighboring inclusions 
[28-301. 

Experimentally, the local stress due to a cast-in- 
place single inclusion and inclusions in a periodic 
arrangement were studied, using a photoelasticity 
method, in Refs [31-351 among others. 

Another important and complicating factor 
which influences the response of composites is the 
matrix-inclusion interface. The interface is often 
represented as a thin layer or a coating around the 
fiber and is called an interphase [36]. The inter- 
phase may be a result of a chemical reaction, 
diffusion, or of other complex processes which 
occur during processing. The influence of the 
interphase on local fields and effective properties 
of composites has been the subject of intensive 
studies in the last decade [e.g. 4-10, 37401; for 
reviews see Refs [4143]. However, the joint effect 
of the geometric arrangement of inclusions and the 

4131 



4132 AL-OSTAZ and JASIUK, COMPOSITE MATERIALS 

inclusion-matrix interface has not yet been 
explored. 

The objective of this paper is to study the local 
stress fields in a transverse plane of a unidirectional 
fiber-reinforced composite. However, for simplicity 
we focus on a model composite made of a thin sheet 
with an epoxy matrix and circular copper inclusions. 
At each matrix-inclusion interface there is an 
interfacial layer, which we refer to as the interphase 
or the coating. Inclusions are arranged randomly in 
the matrix but with the restriction that they are not 
allowed to overlap and that there is a minimum 
distance between them. For comparison we also 
include composites with triangular and square 
periodic arrangements, We subject these composites 
to a mechanical loading, the uniaxial tension, and 
analyze the local stress fields experimentally by using 
a photoelasticity method and numerically via a finite 
element method. We also consider a single coated 
inclusion problem, which we solve analytically. 
numerically and experimentally, as well as other 
simple geometries. 

famous result dealing with a single inclusion is due to 
Eshelby [I]. who found that the stress held in an 
ellipsoidal and perfectly bonded inclusion, subjected 
to either a uniform transformation strain or a 
uniform remote traction, is constant. The solution of 
a single inclusion is applicable for the dilute case, in 
which inclusions are far away from each other and do 
not interact, but it also gives a basic understanding 
of the stress fields in composite materials in general. 

We study a model composite in the form of a thin 
plate in order to simplify the experimental analysis. 
By having the plane stress case we reduce free edge 
effects, i.e. a disturbance of stresses near traction-free 
surfaces owing to a relaxation of stresses there, and 
in this case, we can see photoelastic fringes more 
easily. Alternately, we could simulate a three-dimen- 
sional case directly by using a stress freezing 
technique [34]. 

Thus, we first briefly consider a single coated 
inclusion solution and discuss the influence of several 
parameters on the local stress fields. In the analysis 
we assume that all components of the composite arc 
linearly elastic and isotropic. We denote Young’s 
modulus and Poisson’s ratio of the constituents by E 

and v, and use the superscripts i, c, and m to refer to 
the inclusion, coating (interphase), and matrix, 
respectively. The geometry involves a large plate 
containing a small circular inclusion of radius u with 
the interphase of thickness t. Thus, we have an 
elasticity problem of plane stress type. The applied 
loading is a remote uniaxial tension. In the analysis 
it is convenient to employ the polar coordinate 
system (Y, 0). We assume perfect bonding conditions. 
which imply a continuity of tractions and displace- 
ments at the inclusion-coating (Y = (I) and the 
coating-matrix (r = u + 1) interfaces. 

For an applied uniaxial tension, g,, = oar at 
infinity, our plane elasticity problem can be solved by 
using the following Airy stress functions @ [e.g. 471: 

This paper extends our earlier preliminary study 
involving finite element and photoelastic analyses of 
a sheet with randomly arranged coated disks [44]; our 
related work is given in Ref. [45]; for more details see 
Ref. [46]. 

@“I = 2 r’ + r2 cos 20 + A log r 

B cos 28 
+ r2 

~ + c cos 20 

2. THE SINGLE INCLUSION SOLUTION 

A fundamental problem in micromechanics is one 
involving a single inclusion in an infinite matrix. The 

l/2 314 318 9 314 

@’ = 4 (Dr2 + Fr2 cos 28 + Gf’ cos 28) (2) 

0 2 314 

318 

Fig. I. Sketch of the geometry of the specimen (all dimensions shown are in inches) 
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a+ Hr2+Jlogr+Ly2 
( 

cos 28 

+ M cos 20 + Nr’ cos 20 + Qr” cos 20 
> 

(3) 

where A, B, C, D, F, G, H, J, L, M, N, and Q are 
constants which are evaluated using boundary 
conditions. The results of a parametric study are 
shown in Figs 2 and 3 and Table 3. 

If the initiation of plasticity were of interest, then 
it is convenient to use an equivalent or effective stress 
o,~, based on the Huber-von Mises yield criterion 
[e.g. 481, and defined as 

+(u:, - c.0~)’ + (CT,, - 0::)’ + 6(& + o;, + a;?)]“’ (4) 

where for the plane stress case, considered in this 
paper, 0.-.- = on? = 0,: = 0. 

3. THE MULTI-INCLUSION SOLUTION 

When many inclusions are present in a material 
and they are closely spaced, the problem of finding 
local stresses becomes very complex owing to the 
inclusions’ interactions. The analytical solution for a 
problem of multiple coated inclusions is possible, in 
principle, by using the approach of Gong and Meguid 
[26] or Honein et al. [27], for example, but it would 
be very involved. Alternately, numerical means, such 
as finite element, boundary element, and finite 
difference methods, or experimental approaches, such 
as optical methods, can be used. In this paper, for 
simplicity, we use the finite element program ANSYS 
[49] and the photoelasticity method [e.g. 501 to predict 
elastic fields in a composite with randomly arranged 
inclusions. For comparison we consider composites 
with square and triangular periodic arrangements of 
inclusions, too. Also, we use these two methods to 
find solutions for a single inclusion problem and 
compare them with the analytical solution, discussed 
in Section 2, in order to check the accuracy of our 
experimental and numerical approaches. 

3.1. The experimental approach Cphotoelasticity) 

The experimental set-up involved thin epoxy plates 
(PSM-5), with dimensions of 82.6 mm x 330 mm x 
3.2 mm (3; in x 13 in x i in), containing over thirty 
(31) randomly distributed but non-overlapping 
coated circular copper inclusions with 6.4 mm (; in) 
diameters. To create a non-uniform arrangement of 
inclusions, random numbers, indicating centers of 
inclusions, were generated on a computer according 
to a planar Poisson’s distribution. We imposed 
restrictions that the inclusions didn’t overlap, were 
located at least one inclusion diameter away from an 
edge of a specimen [51], and there was a minimum 

Table 1. Elastic properties of the matrix, inclusions. and coatings 

Material 

Coating I 
Coating 2 
Matrix 
Inclusions 

used in the experimental analysis 

Y E (ksi) E (MPa) E/Em 

0.4 I 7 0.002 
0.4 30 207 0.067 
0.36 450 3102 I 
0.34 17,400 119,963 38.667 

clear distance of one tenth of an inclusion radius a 
(0. la) between any two inclusions. All the inclusions 
were placed in the middle portion of the specimen 
69.8 mm x 79.4 mm (2: in x 3$ in) (a volume fraction 
of inclusions was approximately 23% in that region) 
leaving both ends of the specimen inclusion free. This 
way we had one-width long regions of a homo- 
geneous material between gripped sides of the 
specimen and the inclusions region. A sketch of a 
sample specimen with dimensions is shown in Fig. 1. 

The specimens were prepared in the following way. 
First, the epoxy plates were cut to the desired 
dimensions. Then they were placed one at a time 
between two steel plates and holes were drilled at a 
slow speed to reduce residual stresses and to minimize 
microcracks. The holes were of a diameter equal to 
the combined size of an inclusion and a coating 
(7.9 mm-&in) or to the size of an inclusion 
(6.4mm-_ in) for a two-phase composite. To 
remove any remaining residual stresses owing to 
machining, the specimens were heated to 127°C 
(260°F) (which is beyond the glass transition 
temperature), were held at this temperature for 2 h, 
cooled at a rate of 2.8”C/h (5”F/h) to 66°C (150°F). 
and then cooled in 7 h to room temperature. To 
simulate different interphases, copper inclusions were 
coated with two different adhesive materials, PC-l 
(coating 1) and PC-6 (coating 2), which were more 
compliant than the matrix, while an adhesive PC-l 1 
was used for a two-phase case (i.e. the no-coating case 
or, equivalently, the case where the coating has the 
same properties as the matrix, i.e. E” = E). This was 
done by placing inclusions in the holes and filling the 
remaining spaces with the adhesives, which also 
served as gluing agents between copper inclusions 
and epoxy matrix. The adhesives underwent setting at 
room temperature and thus no residual stresses 
resulted in this process. Elastic properties of these 
materials are given in Table 1. 

After the preparation of samples the photoelastic- 
ity method was used to find stress distributions in 
these birefringent composite plates. The specimens 
were loaded uniaxially to p = 3.39 MPa (492 psi) 
using a screw type testing machine (this loading 
corresponded to an applied force of 100 lb). They 
were gripped approximately one width away from the 
inclusions region on both sides. The loading was 
applied as follows: one side remained stationary 
(fixed grip) while the other was subjected to a 
traction-controlled uniaxial load; the remaining two 
sides were traction free. This loading was small 
enough not to cause any permanent damage in the 
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Table 2. Elastx properties of coatmes used in the numerical analvs~s 

Coating 

1 
-l ; 

4 
5 
6 

E’ (ksi) E’ (MPa) E’E” ,’ 

I 7 0.002 0 36 
120 30 207 827 0.267 0 067 0.36 0.36 

450 3102 I 0.36 
9000 62,050 20 0.36 

90,000 620,500 200 0.36 

DtXCrlptlWl 

Very comphant 
Compliant 
Optimum 
E’ E” = 
stiff E’ = (E”’ + E’)‘2 
Very stfr 

specimens but at the same time allowed us to see 
several fringe orders. Owing to the absence of 
residual stresses we were able to isolate the 
contribution of the mechanical loading only. The 
effects of residual stresses were studied elsewhere [46]. 
In order to calibrate epoxy for a material fringe value 
fr, the load increments were applied to either 
specimens with a hole or to a four-point-loaded 
beam. The average value of a number of fringes was 
used to determine fc according to the formula 
0, - oz = Nf<,lh, where h is the specimen thickness, N 
is the fringe order, and ck, k = 1, 2, are principal 
in-plane normal stresses (0, - r~> is twice the 
magnitude of a maximum in-plane shear stress). For 
our case fc was found to be 9281 N/m (53 lb/in). 

3.2. The Jinite element solution 

In the numerical study we used the commercially 
available finite element package ANSYS 5.1 [49]. We 
utilized quadrilateral plane elements, such that each 
element was defined by eight nodes having two 
degrees of freedom: translations in the nodal x- and 
y-directions. We specified the element edges to be 
0.4~~ along the interfaces of inclusions and 1.6~ along 
the outer edges of the region of observation (shown 
in Figs 4-5). Then, the elements were generated 
automatically using ANSYS. In this numerical 
analysis, we simulated the exact geometry of the 
experimental specimens, described in the previous 
section, with the following boundary conditions: 
traction-free conditions at two parallel side edges (top 
and bottom in Fig. l), an applied uniaxial tension at 
the third edge (right side in Fig. l), and a fixed 
displacement condition at the remaining edge (left 
side in Fig. 1). Numerically, we used six different 

(a) 

coatings (Table 2), ranging from very compliant to 
very stiff, and considered seven different random 
arrangements of inclusions while keeping the volume 
fraction of inclusions fixed. Other studied geometries 
included square and triangular periodic arrange- 
ments, and two, three, and four inclusion cases. 

4. RESULTS AND DISCUSSION 

4.1. The single inclusion case 

In the parametric study of a single coated inclusion 
solution, obtained analytically and discussed in 
Section 2, we illustrate the influence of three 
parameters characterizing the coating (interphase): 
Young’s modulus E’, Poisson’s ratio vc, and the 
thickness t, on the elastic stress fields. The composite 
system is a thin epoxy plate with copper inclusions 
with properties given in Table 1 and the loading is the 
uniaxial tension ov,, = 0”. 

Figure 2(a), (b) shows the joint effect of the 
non-dimensionalized Young’s modulus of the coat- 
ing, E’, with respect to the Young’s modulus of the 
matrix E” (E/E”) and the non-dimensionalized 
thickness t with respect to the inclusion radius a (t/a) 
on the radial stress a: at 19 = 71/2 and the hoop stress 
o& at 0 = 0, respectively, at r = a + t when v” = 0.36; 
0 is the angle taken from the x-axis. Observe that 
both the thickness t and the Young’s modulus of the 
coating ,!? influence stress fields. The effect of 6 on 
the stresses in the matrix is more pronounced when 
the coating is very compliant, i.e. p/E”’ is small. 
Thus, we only plot the results in the range 
0 < E”/E” 6 1. It is interesting to observe that this 
effect of E’ is higher on CT; at 0 = 0 when the 

Fig. 2. Joint effect of coating stiffness E(E/E) and coating thickness t(c/a) on (a) a~/oo at 0 = n/2 and 
(b) az/oo at B = 0, at r = a + t for the problem of a single inclusion embedded in an infinite matrix and 

subjected to a uniaxial tension 00. 
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0 J 
lo.3 1 o-2 10-l 100 10’ 102 103 

EC/Em 

Fig. 3. Influence of coating stiffness .I? on a.~/ao of the 
matrix, coating and inclusion at r = a + t = 1.25~ for a 

single inclusion case under a uniaxial tension 00. 

thickness is very small while the opposite behavior is 
true for a: at 0 = n/2. 

The effect of the Poisson’s ratio of the coating 
material, vc, is very small in comparison to the 
influence of the other two parameters, E” and t, as 
shown in Fig. 2.3(c), (d) in Ref. [46]. Thus, in our 
finite element calculations we assume a common 
value of vc = 0.36 for all six coatings studied. Also, 
in all the remaining numerical and experimental 
examples in this paper we take t = a/4. 

Figure 3 illustrates the maximum effective stress 
Q/G in the matrix, inclusion, and coating (dotted, 
solid, and dash-dot lines, respectively) as a function 
of E”/E” for the single inclusion case. Note that for 
the case of a compliant coating the maximum stress 
in the matrix is in a plane perpendicular to the 
applied loading (a$ at 0 = 0), while for the case of a 

stiff coating the maximum stress is located along the 
line of action of the applied load (cz at 0 = 7r/2) as 
shown in the sketches. Carman et al. [52] observed 
that when the hoop stress at 0 = 0 and the radial 
stress at 0 = n/2 are equal, then the stress 
concentration in the matrix is minimum. They refer 
to such a situation as the “optimum interphase” case 
with respect to stresses. For our model composite 
material the elastic modulus of such an optimum 
coating is 6 = 827 MPa (120 ksi) (denoted as coating 
3 in Table 2). In the case of a very compliant coating, 
6/l?“<< 1, the maximum effective stress is located in 
the matrix, and the inclusion and coating carry 
almost no load, although the inclusion is much stiffer 
(since there is almost no load transfer across the 
interface). As the value of E” increases, both the 
coating and the inclusion start carrying the load. In 
the case of a very stiff coating, F/I!?“>> 1, the 
maximum stress in the composite is located in the 
coating. Note that when E”/E”’ > 1 and the inclusion 
is stiff, the stress field in the matrix remains nearly 
unchanged, as seen in Fig. 3. 

Table 3 summarizes magnitudes and locations of 
the maximum stresses cr,~/a,, and (cr, - e,)/u,, in 
different constituents of the composite (matrix, 
coating, and inclusion). Note that the locations of the 
maximum stress are not necessarily at one of the 
interfaces. The maximum stress in the matrix is at the 
coating-matrix interface for a compliant coating case 
but as the coating stiffness increases the locations of 
the maximum stress move further away from the 
interface. The locations of the maximum stresses in 
the coating also vary with the radial coordinate and 
depend on 6 and the angle. Stresses in the coated 
inclusion are uniform, as expected from the solution 
of Eshelby [l]. 

Table 3. Magnitudes and locations of maximum stresses a&n and (al - m)/oo in a single inclusion case under a uniaxial tensmn m, obtained 
analytically (t = a/4) 

Coating 

Stress 1 2 3 4 5 6 All& 

Matrix 
o&e 

(a, - ahloo 

0.995 1.07 
r = 1.25~ r = 1.25~ 

1 .Ol I .25 
r = 1.25n I = 1.25a 

2.96 
r = 1.25~ 

2.96 
r = 1.25a 

2.17 
r = 1.25~ 

2.25 
r = 1.25~ 

0.034 
i- = 1.06~1 

0.254 
r = 1.060 

0.012 
r = 1.250 

0.014 
I = 1.250 

0.043 

0.624 
r = 1.070 

0.496 
r = 1.15a 

0.227 
I = 1.25~1 

0.256 
r = 1.25a 

0.782 

0.047 0.844 

1.33 
r = 1.25a 

1.41 
r = 1.25~~ 

1.33 
r = 1.25~ 

1.45 
i- = 1.25~ 

1.13 
r = 1.125~ 

0.955 
r = I.220 

0.434 
r = 1.25a 

0.503 
I = 1.25~ 

1.35 

1.42 

1.40 
r -= 1.267~ 

1.35 
r = 1.43a 

1.00 
r+m 
1 .oo 

ri3c 

1.40 
I = 1.25~1 

I .32 
r = 1.25a 

0.663 
i- = 1.25a 

0.736 
I = 1.2511 

I .49 

1.50 

1.40 
r = 1.570 

1.35 
I = 1.73a 

1.00 
F-+00 

1.00 
rim 

1.55 
I = 1.25a 

1.61 
I = 1.2% 

1.30 
r = 1.25~ 

1.31 
r = 1.25~ 

1.69 

I .66 

1.40 0 
r = 1.60a 

1.35 
r = 1.77a 

1.00 90 
r+cX 

1 .oo 
r-+m 

1.85 0 
I=0 

2.10 
i-=a 

4.64 
?-=(I 

4.81 
at r=a 

90 

1.52 O-90’ 
O<r<a 
1.61 
O<r40 
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We also studied a single inclusion problem 
experimentally, using the photoelasticity method. In 
the case of a two-phase composite (matrix and 
inclusion only) fringes start forming at the inclusion- 
matrix interface along the line of action of the applied 
load and then they propagate to the sides of the 
inclusion (Fig. 7 in Ref. [44] or Fig. 2.5 in Ref. [46]). 
The opposite behavior is observed in the cases of an 
inclusion with a compliant coating (Fig. 8 in Ref. [44] 
or Fig. 2.6 in Ref. [46]) or a hole, in which fringes 
start forming in a plane perpendicular to the line of 
action of the applied load and eventually migrate to 
the line parallel to the line of action of the applied 
load. 

4.2. The multi-inclusion case 

The case of a composite with a 23% volume 
fraction of randomly distributed inclusions 
[Fig. 4(a), (b)] shows similar behavior, in terms of the 
fringe pattern formation, to that observed for the 
single inclusion case, discussed in the previous section 
and illustrated in Figs 7 and 8 in Ref. [44]. Recall that 
fringe patterns denote contours of a difference in 
normal in-plane principal stresses, 0) - CT?, or a 
maximum in-plane shear stress, 7max = (0, - a2)/2. 
Figure 4(a) gives fringe patterns in the matrix of a 
two-phase composite and Fig. 4(b) in the matrix of 
a composite with a very compliant interphase 
(coating 1) for the same inclusion arrangement and 
the same load of o0 = 3.39 MPa (492 psi), applied in 
the horizontal direction. Note that non-transmissible 
regions are those of the inclusions in Fig. 4(a) and of 
the inclusions and the coatings in Fig. 4(b). Also, in 
Fig. 4 only the close-ups of inclusion regions are 
shown in order to give a better resolution of details. 
The numbers in Fig. 4 denote fringe numbers and the 
higher the number, the higher the maximum shear 
stress [e.g. 501. Observe that stress fields in the matrix 
are very non-uniformly distributed in both cases and 
the stresses in the matrix are much higher in the 
compliant interphase case [Fig. 4(b)], as expected 
from the parametric study of a single inclusion case 
(see Table 3). 

In Fig. 5(a), (b) the finite element outputs illustrate 
the joint effect of the random arrangement and 
interface on geR for the same geometric arrangement 
of fibers and the corresponding properties as in 
Fig. 4(a), (b), for a uniaxial horizontal tension; again, 
only the middle portion of the specimen is shown. 
Note that color scales are different in Fig. 5(a) and 
(b). This way the trends are clearer for each case 
individually. The use of the same scale would result 
in only blue shades for a perfectly bonded case. Our 
finite element calculations also include four ad- 
ditional interphase cases given in Table 2. Stress 
contours for those cases are shown in Fig. 2.10(c)-(f) 
in Ref. [46]. 

We observe that when the interface is very 
compliant (coating l), then almost no load is 
transferred from the matrix to the inclusions and it 

is carried by the matrix [Fig. 5(b)]. When the interface 
is compliant (coating 2), but yet capable of 
transferring some loads to the inclusions. then the 
loads are carried in part by the coatings and 
inclusions, but the maximum stress still occurs in the 
matrix. In the case of an optimum coating (minimum 
stress condition) the load is shared more equally 
between the matrix, coating and inclusions. If the 
interphase elastic modulus .I?‘ increases further and a 
good bond is maintained between interfaces then the 
load is carried mainly by the stiff inclusions [Fig. 5(a)] 
and the coatings. But if the coating is very stiff then 
the highest stress occurs in the coating. Note that this 
behavior for the multi-inclusion case discussed here is 
similar to the one observed for a single inclusion case 
and illustrated in Fig. 3. 

In Fig. 5(a) there is bridging of stresses through the 
inclusions along the line of action of the applied load. 
The inclusions close to each other and aligned in the 
direction of the load behave like longitudinal fibers 
subjected to an axial loading. For inclusions with a 
compliant interphase, shown in Fig. 5(b), the 
maximum stress around each inclusion is located in 
a plane perpendicular to the applied loading, as we 
observed in the single inclusion case. Similar behavior 
occurs in elastic sheets with holes. 

Also, Fig. 5(a) shows that the load is distributed 
very unevenly between the inclusions. This is in 
contrast to periodic arrangements in which inclusions 
share loads equally. In Fig. 5(b) we see a localization 
of stresses in the matrix. In the periodic arrangements 
the stress field is distributed throughout the 
composite and is lower in magnitude as shown in 
Table 4 (note that out of the two periodic cases 
considered the triangular arrangement gives lower 
stresses than the square one for the same volume 
fraction). Thus, the non-uniform arrangement leads 
to the stress localization and higher maximum 
stresses and, hence, to an earlier initiation of damage 
and consequently a lower strength. These issues were 
also discussed elsewhere [e.g. 15, 18, 191. 

Table 4 summarizes the results for the maximum 
effective stress o,~ in the matrix, coating, and 
inclusions for seven random arrangements and two 
periodic arrangements (square, with a uniaxial 
traction applied along the rows, and triangular). The 
volume fraction used in these calculations is 23% for 
both random and periodic arrangements. We also 
include the results for two isolated inclusions, 
embedded in an epoxy matrix or in an effective 
medium. These pairs of inclusions were chosen from 
each of the above seven arrangements because they 
had the maximum stress in the matrix in their vicinity 
in the multi-inclusion configuration. In other words 
we removed the other 29 inclusions from the seven 
31-inclusion configurations (i.e. replaced them by 
either matrix or effective medium) keeping the 
identical mesh as in the random arrangement. The 
effective medium properties were calculated by using 
the Mori-Tanaka method [4]. We observe that for the 
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4_ LOADING DIRECTION _* 

Fig. 4. Isochromatic fringe patterns in an epoxy matrix with randomly distributed copper inclusions for 
a uniaxial applied stress of 00 = 3.39 MPa in the horizontal direction for (a) the two-phase composite 

(E!F^ = I) and (b) the coating I case (F/Em = l/450) when r = a/4 and.f= 23%. 

compliant coating cases the two inclusions embedded inclusions placed in the matrix than in the effective 
in either the matrix or the effective medium give a medium, as expected, because of a higher mismatch 
lower effective stress than the one in the actual in elastic moduli. The opposite behavior is observed 
composite, and the stresses are higher near the two for the stiff coating cases. The maximum effective 
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stress values, found in Table 4, arc averaged (denoted For all geometries. the elfectivc stresses in the 
by AVG) based on seven configurations, Thus, the matrix are highest when the interphase is most 
inclusion pair is not sufficient to give estimates of the compliant. This is expected. since. in this C:ISC’. the 
maximum stress fields in the multi-inclusion environ- matrix carried most of the load. although the 
ment and the neighboring inclusions have an inclusions are much stiffer than the matrix material. 
important contribution to these stress fields. Another important observation is that there is a very 

Q-+% WAW 
DMX =0.19OE-04 
SMN =0.363193 
SMX =I.702 

0.363193 
0.511946 
0.670697 
0.629446 

Yz2 
1:306 
1.464 
1.623 
1.762 

+_ LOADBNG DIRECTION _+ 

/o 
%_# o (NOA\ W 

4 DC =0.266Ea 
SW =0.003407 
SlW3= 
SMX =9.-883’ 
Swu3 m13.029 

Y!i%407 
p; 

;:g 
. 

%Z 

~:tIii 

Fig. 5. The stress ciemff/uO in a model composite with randomly distributed inclusions, subjected to a uniaxial 
tension CRI in the horizontal direction, obtained by FEM for (a) the two-phase composite (E/E = 1) and 

(b) the coating I case (E,‘E” = I /450) when t = 014 and ,f= 23%. 
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5 

r 

I 

30 60 90 
9 

Fig. 6. Effect of inclination angle 0 on the normal in-plane 
principal stress difference (at - @‘)/on in the matrix for the 

two inclusion case when I = 014. 

Fig. 7. Effect of inclination angle 0 on (a; - &);cr,, for the 
two inclusion case (t = ~14). 

large scatter in data (standard deviation, denoted as 
STD in Table 4) for compliant coating cases and it 
decreases considerably as the coating stiffness 
increases. 

4.3. The two-inclusion solution 

Table 4. 

In order to gain insight about the interaction of 
stress fields in a multi-inclusion configuration we 
focused also on the two-inclusion solution. The local 
stress fields owing to two inclusions depend on an 
inclination angle between the two inclusions with 
respect to an applied loading, a separation distance 
between the two inclusions, and the presence of other 
inclusions. We define the angle of inclination 0,., as 
the angle between a line connecting centers of two 
inclusions and a line perpendicular to the applied 
uniaxial loading. We conducted this study numeri- 
cally. In the analysis we placed the two inclusions in 
a matrix of dimensions 3a x 50. We used a fine mesh 

with element edges of 0.1~ along interfaces and 
applied a remote unit uniaxial tension. We kept the 
same type of mesh for all geometries, i.e. did not 
refine the mesh as the inclusions approached each 
other. We followed this approach for computational 
simplicity. Also, in this paper our objective was to 
report the trends rather than to focus on high 
numerical accuracy. 
4.3.1. Eflect of the inclination angle on local elastic 

stress fields. First, we explore the effect of the angle 
of inclination H,,,. We consider numerically the case 
of two coated inclusions separated by a constant 
distance d = a and inclined by the angle 8,,, = 0. The 
influence of the inclination angle on the maximum 
in-plane principal normal stress difference rr, - o2 (or 
the maximum in-plane principal shear stress) in the 
matrix and coating is shown in Figs 6 and 7. 
respectively. The location of the maximum stress 
difference a;” - cry is at 0 = 0, i.e. when the two 

^ -B- 

0 
0 3o 

6 
60 90 

Coating 
Arrangement I 2 3 4 5 6 

Pertodic (square) 3.38 2.29 1.42 2.03 2.41 2.52 
Periodic (triangular) 3.10 1.81 1.15 1.32 2.02 2.09 
Random AVG (8.17) (4.07) (1.51’) (2.41) (3.09) (2.98) 

STD 2.45 I.461 0.101 0.112 0.113 0.113 ; 
7~0 mc. in matrix AVG (5.20) (3.51) (1.50, (2.50) (3.20) (3.19) 

STD 2.25 I.352 O.lhl 0.164 
i 

0.165 0.168 
Two inc. in eff. med. AVG 15.19) (3.43) (I .46 > (2.53) (3.25) (3.25) 

STD 2.04 1.33 0.157 0. I60 0. I62 0 I65 

Periodic (square) 0.003 0.534 I .24 2.13 2.40 4.07 
Permdic (triangular) 0.002 0.426 1.20 I .44 2.31 3.86 
Random AVG (0.034) (0.701) (1.30) (2.37) (3.10) (6.26) 

STD 0.007 0.068 0.104 0.113 I.541 
Two mc. m matrix AVG (0.020) (0.65) (I.301 (2.40) (3.34) 

2.32 -; 
(6.68) STD 0.007 0 054 0.055 0.063 I.523 2.24 5 

Two inc. in eff. med. AVG (0.01 I) (0.643) (1.29) (2.38) (3.30) (6.43) 
STD 0.006 0.052 0.054 0.060 I.510 2.21 

Periodic (square) 0.009 0.693 1.39 2.11 3.40 3.14 
Periodic (triangular) 0.001 0.599 I .26 I .5x 2.80 2.62 
Random AVG (0.044) (0.745) (I .46) (2.50) (4.78) (4.11) j 

STD 0.005 0.063 0.089 0.115 I.12 I.01 3 
Two inc. in matrix AVG (0.018) (0.601) (1.46) (2.30) (5.19) (4.65) 

1 

STD 0.004 0.052 0.06 I 0.065 I.10 0.981 2 

Two mc. m eff. med. AVG (0.015) (0.532) (1.46) (2.25) (5.lO) (4.59) 
STD 0.004 0.049 0.054 0.062 0.995 0.976 
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inclusions are aligned in a plane perpendicular to the 
applied loading, for cases of compliant coating. 111 
stiffer coating cases, the location of the maximum 
g.;I’ - a? is at 0 = rri2, i.e. when the two inclusions arc 
aligned along the line of action of the applied loading. 
as in the single inclusion solution discussed before, In 
the optimum coating case (coating 3) the stress in the 
matrix is almost the same for any angle of inclination 
of the two inclusions and is lowest for this case as 

expected. We can thus define two extreme angles of 
inclination: critical and optimum. We denote the 
critical angle of inclination as the angle which will 
produce the maximum stress. The optimum angle 
inclination is the angle that gives the minimum stress. 
We are interested in the critical angle, which for the 
soft coatings is at (I = 0 and for the stiff coatings is 
at t) = n/2. 

The maximum in-plane shear stress in the coating 
is in the stiffest coating (coating 6) at 0 = n/2, while 
in the optimum coating case (coating 3) the stress is 
independent of 0, as shown in Fig. 7. The lowest 
stress in the coating is in the most compliant coating 
as expected. 

Also, we found that the maximum shear stress in 
the inclusion has a small dependence on 0. 

We compared results of our numerical calculations 
for a very compliant coating (hole) and for a perfect 
bonding case with the analytical solution of Kouris 
[30] when d = a and 0 = 0, rr/2 and found very good 
agreement between our finite element and his 
analytical results [46]. 
4.3.2. .!$iict of’the separation distance between two 

inclusions. Next we vary the separation distance 
between the two coated inclusions inclined at either 
0 = 0 or I) = 71/2. Figure 8 shows the maximum 
effective stress in the matrix a$ as a function of the 
separation distance between the two coated in- 
clusions when the inclusions are placed at P = 0, i.e. 
along the line perpendicular to the uniaxial applied 

0.5 1 1.5 
d/a 

load. Note that decreasing the scparatron tlistancc 
tither increases or does not affect the local cfYccti\t. 

stress in the matrix. The strcs\ in the matrix is highest 
when the coating is most compliant and the distance 
between the inclusions is very small (a limiting C;LSC 

of two nearby cavities uas studied in Kefs [53. 541. 
where the nature of stress singularity as holes nearly 
touched was examined). A similar but less pro- 
nounced behavior is observed for coating 2. When the 
elastic modulus of the coating is greater or equal to 
the modulus of the matrix (F’E”’ 2 I). the stress is 
unaffected by the distance between the inclusions. 
This is due to the fact that when the coating ix 
compliant the maximum (hoop) stress occurs at the 
line perpendicular to the applied toad ((I = 0). Placing 
the second inclusion along that line increases the 
stress concentration. However. when the inclusion 
with the stiff coating is subjected to a uniaxial applied 
load the maximum (radial) stress is at 0 = rr,‘2. In this 
case. placing the second inclusion along 0 = 0 does 
not influence the magnitude of the stresses. The 
opposite is true, however, when the inclusions arc 
aligned along the line of loading (II = n, 2) as shown 
in Fig. 9. In this situation. placing the second 
inclusion has no influence on stresses in the matrix 
when the inclusions have compliant coatings. 
However. it has a pronounced effect when E/E” 3 1. 
In this case stresses increase significantly as the 
distance between the two inclusions decreases. It is 
interesting to observe that there is a cross-over point, 
i.e. that at a larger separation distance the stresses are 
higher in the case of a compliant coating than in the 
case of a stiff coating. 

4.3.3. .E&t of’ tlzr prrxvw c!f’ otlwr inclusi0tl.v. 
Finally, we explore the effect of more than two 
inclusions on the stress field. We do so by considering 
three and four inclusions in a row aligned along a line 
perpendicular or parallel to the line of loading. which 
corresponds to the angles 0 = 0 (Fig. 10) and 0 = n:2 

11 
0 I 

‘Z/ tttttttty 1 

d/a 

Fig. 8. Effect of separation distance d between two Fig. 9. Effect of separation distance rl between two 

inclusions on the effective stress in the matrix U,“/CTO for a inclusions on the effective stress in the matrix r&/o,, for a 

uniaxial tension CJ,, in the vertical direction when I = c//4 and uniaxial tension oo in the vertical direction when I = (r/4 and 

n = 0. 0 = n/2. 
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p+ ~ ] 

2 3 4 

number of inclusions 

Fig. 10. Effect of number of inclusions on u,“A/u~ for a 
uniaxial tension ~0 in the vertical direction when t = a/4 and 

0 = 0. 

(Fig. ll), respectively, and three or four inclusions 
with their centers forming an equilateral triangle or 
a square. 

Effect of Inclusions Aligned Along Q = 0 and 0 = ~112 

Figure 10 shows the effect of additional inclusions 
when inclusions are aligned at 0 = 0, i.e. along the 
line perpendicular to an applied load. When the 
coating is compliant (coatings 1 and 2), increasing the 
number of inclusions increases the maximum effective 
stress in the matrix. However, adding each additional 
inclusion has a smaller contribution to the stress. 
When the coating is optimum or stiffer there is almost 
no effect of additional inclusions on 0,“. 

Figure 11 illustrates the effect of additional 
inclusions when the inclusions are aligned along the 
line of the applied load. When the elastic modulus of 
the coating is higher or equal to that of the matrix, 
i.e. 6/P > 1, then the addition of inclusions 
increases the effective stress in the matrix but each 
additional inclusion has a smaller influence on stress. 
For the cases of coatings 2 or 3 (the optimum coating) 

3.0 
LCI c 

1.a - 1 
1 2 3 4 

number of inclusions 

Fig. 11. Effect of number of inclusions on u,“R/o,, for a 
uniaxial tension 00 in the vertical direction when t = a/4 and 

0 = n/2. 

Table 5. Maximum effective stress o.a/ao in the matrix, inclusions, 
and coatings owing to two, three, and four inclusions separated by 
a constant distance d = a for a uniaxial tension applied in the vertical 

direction for various coating cases (I = a/4) 

I 3.94 0.012 
2 2.64 0.377 
3 1.26 1.13 
4 I 21 I.28 
5 1.32 1.35 
6 I .32 3.01 

I 2.26 0.012 0.036 
2 I .82 0.732 0.726 
3 1.26 1.14 I .36 
4 1.74 1.70 1.70 
5 2.07 2.49 1.94 
6 2.19 4.50 1.74 

I 3.68 0.01 I 
2 2.10 0.742 
3 I .28 1.13 
4 I .40 1.45 
5 1.59 1.68 
6 I .63 3.24 

1 3.82 
2 2.54 
3 1.28 
4 I .67 
5 I .98 
6 1.96 

0.041 0.053 
0.784 0.915 
1.16 I .27 
I .62 I .65 
1.93 1.90 
4.45 I .72 

d=a 

d=a 

--@I I* 
d=a 

.- - Q ._ _ 9 
-, Q . P 

-Mb- 
d=a 

there is no contribution to stresses when more 
inclusions are added. This tendency is reversed when 
the coating is very compliant (coating 1) and there is 
even a decrease in 0% as more inclusions are added. 

Effect of Other Arrangements 

In Table 5 we compare the maximum effective 
stress (TAR, due to three and four inclusions in a 
triangular or square configuration and separated by 
a constant distance d = a, to the case of two 
inclusions separated by the same distance and 
subjected to the same uniaxial loading in the vertical 
direction. For the four inclusion case the effective 
stress in the matrix ~emff between any two inclusions is 
more than a,” between two isolated inclusions 
inclined along the optimum path but slightly less than 
at between two inclusions aligned along the critical 
path. The opposite behavior was observed for stresses 
in the coating and the inclusions. Also, three 
inclusions give a lower stress in all three components 
than the four inclusion configuration. This is due to 
the angle of inclination of inclusions which is more 
critical in the square case. Note that for the optimum 
coating case the stress is almost unchanged for all 
four configurations and all three components. 
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4.3.4. Other Jbctors (plane .strain case, other w~umc 
,/kac.tions). All our numerical examples are for the 
plane stress case. We choose this case for experimen- 
tal simplicity, as discussed in the Introduction. We 
compared plane stress and plane strain stress results 
and found that plane stress gave higher stresses for 
both single and multi-inclusion geometries [46]. We 
do not include these results here due to space 
limitation. 

We also considered the higher volume fraction 
(,f’= 46%) case. In this situation the magnitudes of 
the maximum stress were on average higher than for 
f‘= 23% owing to a higher probability of closer 
‘distances between inclusions. 

5. FINAL REMARKS 

In this paper we studied the model composite 
material for experimental simplicity; thick coatings 
were chosen for both experimental and numerical 
convenience. The material mismatch, considered 
here, is most closely applicable to polymer matrix 
composites due to a high inclusion-matrix moduli 
ratio. A similar approach can be used to study 
metal-matrix and ceramic-matrix composites. How- 
ever, the focus of this research was not to study a 
specific composite system but to understand the 
complex phenomena influencing local stresses in 
matrix-inclusion composite materials. 

Finally, we neglected the effect of thermal residual 
stresses. This subject has been investigated separately 
[46]. We isolated mechanical and thermal factors in 
order to gain a more fundamental understanding of 
the elastic events. 

6. CONCLUSIONS 

In this paper we studied the joint influence of the 
inclusion-matrix interface and the geometric arrange- 
ment on local stress fields of the model composite 
having circular copper inclusions (with thick coat- 
ings) in a photoelastic matrix. We found that both of 
these factors significantly contribute to the local 
stress fields. A random arrangement of inclusions 
gives rise to higher stress concentrations in the matrix 
than periodic ones owing to a localization of stresses. 
The compliant interface cases gives much higher 
stress concentrations in the matrix although in- 
clusions are stiffer. This is due to the fact that there 
is almost no load transfer across the interface and 
thus the matrix carried the load. Also, the compliant 
interface cases give a much higher scatter in the 
magnitudes of maximum local stresses than stiffer 
coating cases. In addition, we considered simpler 
geometries involving one, two, and several inclusions 
in order to gain a fundamental understanding of 
stresses in a multi-inclusion environment. We 
conducted a parametric study and investigated how 
the stresses depend on the distance between the two 
closest inclusions, their angle of inclination with 

COMPOSITE MATERIALS 

respect to the applied loading. and the presence 01’ 
additional inclusions. A more complete study of the 
effects of a random arrangement of inclusions 
requires a stochastic analysis. which will be the 
subject of future investigation. 

.4ckno~~/ed~mzcn~.c --We would hke to thank Professors G. 
Cloud. A. Lee, M. Ostoja-Starzewski, M. F. Thorpe. and Dr 
L. C. Davis for helpful discussions on this project. We 
gratefully acknowledge the financial support of the 
Research Excellence Fund from the State of Michigan, the 
NSF grant No. MSS 9402285, and the NSF Center for 
Low-Cost. High-Speed Polymer Composites Processing. 

I. 
2. 

3 _ 

4. 

5. 

6. 

7. 
8. 

9. 

IO. 

I I. 

12. 

13. 

14. 

15. 

16. 

17. 
18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27 

28. 

REFERENCES 

Eshelby, J. D., Proc. R. Sot., 1957, A241, 376. 
Mura, T., Micromechanics ofDe/ticts in Solids, 2nd edn. 
Martinus Nijhoff, Dordrecht, 1987. 
Mori, T. and Wakashima, K., in Micromechanics and 
Inhomogeneity, the Mura Annicrrsary Volume, ed. G. J. 
Weng, M. Taya and H. Abe. Springer, New York. 1990. 
p. 269. 
Benveniste, Y., Dvorak, G. J. and Chen. T., Mech. 
Mater.. 1989, 7, 305. 
Tong, Y. and Jasiuk I., in Proc. American Society Ji)r 
Composifes. 5th Technical Conference, Technomic. 
Lancaster, PA, 1990, p. I 17. 
Robertson, D. D. and Mall, S., .J. Compos. Technol. 
Res., 1992, 14, 3. 
Bigelow, C. A., J. Comp. Technol. Res., 1992, 14, 21 I. 
Li, D. S. and Wisnom, M. R., Comp. Sci. & Technol., 
1994, 51, 545. 
Zhu, H. and Achenbach. J. D., Mech. Mater., 1991. 11, 
347. 
Gosz, M., Moran, B. and Achenbach. J. D.. Int. J. 
Damage Mech., 1994, 3, 357. 
Sorensen, F. and Talreia, R., Mech. Mater., 1993, 16, 
351. 
Bohm, J., Rammerstorfer, F. G., Fisher, F. D. and 
Siegmund, T., J. Engng Mater. Technol., 1994,116,268. 
Ohno. N. and Hutchinson. J. W.. J. Mech. Phys. Solids. 
1984, 32, 63. 
Basista, M. and Krajcinovic, D., Comp. Engng, 1991. 1, 
103. 
Becker, R. and Smelser, R. E.. 1. Mech. Ph~~s. Solids, 
1994, 42, 773. 
Pyrz, R. and Bochenek, B., Sci. Engng Comp. Mater.. 
1994, 3, 95. 
Pyrz, R.. Conzp. Sci. Technol.. 1994, 50, 197. 
Ostoja-Starzewski, M., Sheng, P. and Jasiuk, I.. J. 
Engng Muter. Technol., 1994, 116, 384. 
Brockenbrough, J. R., Suresh, S. and Wienecke, H. A., 
dcta metall. mater.. 1991, 39, 735. 
Day, A. R., Snyder, K. A., Garboczi, E. J. and Thorpe. 
M. F., J. Mech. PhFs. Solids, 1992, 40, 1031. 
Snyder, K. A., Garboczi. E. J. and Day. A. R.. J. appl. 
Phys., 1992, 12, 5948. 
Davis, L. C.. Hass, K., Chen, J. and Thorpe. M. F., 
Appl. Mech. Rev.. 1994, 47(2), S5. 
Chen, J.. Thorpe, M. F. and Davis, L. C., J. appl. Phvs., 
199.5, 77, 4349. 
Ghosh, S. and Mukhopadhyay. S., Comput. Methods 
Appl. Mech. Engng, 1993, 104, 211. 
Zhang, J. and Katsube, N., Finite Elements in Analysis 
and Design, 1995, 19, 45. 
Gong, S. X. and Meguid, S. A.. Acta me&., 1993, 99, 
49. 
Honein, E., Honein, T. and Herrmann, G., J. Engng 
Mater. Technol., 1994, 16, 298. 
Kouris, D. and Marshall, D., J. Engng Mater. Technol., 
1994. 116, 319. 



AL-OSTAZ and JASIUK: COMPOSITE MATERIALS 4143 

29. 

30. 
31. 

32. 

33. 

34. 

35. 
36. 
31. 

38. 
39. 

40. 
41. 

42. 
43. 

Kouris, D. and Tsuchida, E., Mech. Mafer., 1991, 12, 
131. 
Kouris, D., J. appl. Mech., 1993, 60, 203. 
Daniel, I. M. and Durelli, A. J., Expl Mech., 1962, 2, 
240. 
Parks, V. J. and Durelli, A. J., J. appi. Mech., 1965,32, 
504. 
Durelli, A. J., Parks, V. J., Feng, H. and Chiang, F., in 
Mechanics of Composite Materials, ed. F. W. Wendt, H. 
Liebowitz and N. Perrone. Pergamon Press, Oxford, 
1967, p. 265. 
Marloff, R. H. and Daniel, I. M., Expl Mech., 1969, 9, 
156. 
Javornicky, J., Exp. Stress. Anal., 1970, 39. 
Drzal, L. T.. Adv. Polym. Sci., 1985, 75, 1. 
Broutman L. J. and Agarwal, B. D., Poi.vm. Engng Sci., 
1974, 14, 581. 
Pagano, N. J., Comp. Sci. Technol. 1988, 31, 213. 
Nimmer, R. P., Bankert, R. J., Russell, E. S., Smith G. 
A. and Wright, P. K., J. Camp. Technol. Res., 1991, 13, 
3. 
Arnold, S. and Wilt, T., Comp. Interfaces, 1993, 1, 381. 
Kerans, R. J., Hay, R. S., Pagano, N. J. and 
Parthasarathy, T. A., Ceram. Bull., 1989, 68, 429. 
Hughes, J. D. H., Comp. Sci. Technol., 1991, 41, 13. 
Wright. W., Comp. Polymer., 1990, 3, 360. 

44. 

45. 

46. 

41. 

48. 

49. 

50. 

51. 

52. 

53. 

54. 

Al-Ostaz, A. and Jasiuk, I., in Durability of Composite 
Materials, MD-Vol. 51, ed. R. C. Wetherhold, ASME, 
New York, 1994, p. 207. 
Al-Ostaz, A. and Jasiuk, I., in Durability and Damage 
of Composite Materials, Vol. 2, ed. N. Sottos et al. 
ASME, New York, 1995, p. 254. 
Al-Ostaz, A. The influence of random arrangement and 
interface on elastic fields and fracture of model 
composite materials. Ph.D. dissertation, Michigan State 
University, 1996. 
Timoshenko, S. P. and Goodier, J. N., Theory of 
Elasticitv. 3rd edn. McGraw-Hill. New York. 1993. 
Mendelson, A., Plasticity: Theory and Application. 
Krieger, Malambar, FL, 1968. 
ANSYS 5.1 User Manual. Swanson Analysis Systems, 
Inc., Houston, 1995. 
Dally, J. W. and Rilley, W. F., Experimental Stress 
Analysis, 3rd end. McGraw-Hill, New York. 1991. 
Lee, M., Jasiuk, I. and Tsuchida, E., J. appl. Mech., 
1992, 59, S51. 
Carman, G. P., Averill, R. C., Reifsnider, K. L. and 
Reddy, J. N.. J. Comp. Mater., 1992, 27, 589. 
Duan, Z. P., Kiesler, R. and Herrmann, G., J. Mech. 
Phps. Solids, 1986, 43, 539. 
Zimmerman. R. W., Mech. Res. Commun., 1988, l&87. 


